MATH 245 F20, Exam 3 Questions

(60 minutes, open book, open notes)

1. Freebie.
2. Let $S=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=6 y+5\}$ and $T=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=2 y+1\}$. Prove or disprove that $S=T$.
3. Let R, S, T be sets. Prove that $(R \backslash S) \backslash T \subseteq R \backslash(S \backslash T)$.
4. Let $S=\{x\}$. Find a set T that simultaneously satisfies all of the following properties: $S \nsubseteq T$, $2^{S} \in T, 2^{S} \subseteq T, S \times 2^{S} \subseteq T$. Be very careful about notation.
5. Prove or disprove: For all sets S, U with $S \subseteq U$, we have $2^{S} \cup 2^{\left(S^{c}\right)}=2^{U}$.
6. Let A, B, C be sets. Prove that $A \times(B \backslash C)=(A \times B) \backslash(A \times C)$. Note: Do not just cite a theorem.
7. Let S be the set of letters in your name (choose first or last). Find a relation R on S that is not reflexive, not irreflexive, not symmetric, not antisymmetric, not trichotomous, and not transitive. Give your relation as a directed graph, and fully justify each of these properties.
8. Let S be a set, $T \subseteq S$, and R a reflexive relation on S. Prove that $\left(\left.R\right|_{T}\right)^{+}$is reflexive.
